Mixed pooling of seasonality for time series forecasting: An application to pallet transport data
نویسندگان
چکیده
Multiple seasonal patterns, which often interact with each other, play a key role in time series forecasting, especially for business where effects are dramatic. Previous approaches including Fourier decomposition, exponential smoothing, and autoregressive integrated moving average (SARIMA) models do not reflect the distinct characteristics of period patterns. We propose mixed hierarchical seasonality (MHS) model. Intermediate parameters first estimated, mixture intermediate is taken. This results model that automatically learns relative importance addresses interactions between them. The implemented Stan, probabilistic language, was compared three existing on real-world dataset pallet transport from logistic network. Our new achieved considerable improvements terms out sample prediction error predictive density to complete pooling, SARIMA
منابع مشابه
an application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
Forecasting pooling for short time series of macroeconomic variables
It is rather common to have several competing forecasts for the same variable, and many methods have been suggested to pick up the best, on the basis of their past forecasting performance. As an alternative, the forecasts can be combined to obtain a pooled forecast, and several options are available to select what forecasts should be pooled, and how to determine their relative weights. In this ...
متن کاملTime Series Data Mining for Energy Prices Forecasting: An Application to Real Data
Recently, at the 119th European Study Group with Industry, the Energy Solutions Operator EDP proposed a challenge concerning electricity prices simulation, not only for risk measures purposes but also for scenario analysis in terms of pricing and strategy. The main purpose was short-term Electricity Price Forecasting (EPF). This analysis is contextualized in the study of time series behavior, i...
متن کاملAn Application of Fuzzy Time Series to Improve ISE Forecasting
The problem of fuzzy time series forecasting plays an important role in many scientific areas such as statistics and neural networks. While forecasting fuzzy time series, most of forecasting applications use the same length of intervals. The determination of length of intervals is significant and critical in fuzzy time series forecasting. The usage of convenient performance measure may also hav...
متن کاملAn Application of Time Series Analysis for Weather Forecasting
Weather forecasting has been one of the most challenging problems around the world for more than half a century. Not only because of its practical values in meteorology, but it is also a typical unbiased time series forecasting problem in scientific research. This paper utilizes artificial neural network (ANN) simulated in MATLAB to predict two important weather parameters i.e. maximum and mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems With Applications
سال: 2022
ISSN: ['1873-6793', '0957-4174']
DOI: https://doi.org/10.1016/j.eswa.2022.117195